# Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting

Junchen Ye<sup>1\*</sup>, Zihan Liu<sup>1\*</sup>, Bowen Du<sup>1</sup>, Leilei Sun<sup>1</sup>, Weimiao Li<sup>1</sup>, Yanjie Fu<sup>2</sup>, Hui Xiong<sup>3</sup>



<sup>1</sup>Beihang University

<sup>2</sup>University of <sup>3</sup> Hong Kong University Central Florida of Science and Technology

## Introduction

Time series forecasting is a ubiquitous problem in practical scenarios. By modeling the evolution of the states or events in the future, it enables decision-making and plays a vital role in numerous domains, such as traffic, healthcare, and finance.

Recent studies have shown great promise in applying graph neural networks for multivariate time series forecasting, where the interactions of time series are described as a graph structure and the variables are represented as the graph nodes. Along this line, existing methods usually assume that the graph structure (or the adjacency matrix), which determines the aggregation manner of graph neural network, is fixed either by definition or self-learning. However,

- 1. The interactions of variables can be dynamic and evolutionary in real-world scenarios.
- The interactions of time series are quite different if they are 2. observed at different time scales.

Evolving over time Different Fixed

## Methodology



**Overview:** The multivariate time series is first fed into a MLP to obtain the initial representation, and the stacked multi-scale extractors follow. Each extractor is made up of three components. The temporal convolution module is utilized to capture multiscale representations on the temporal dimension. The output of the evolving graph structure learner is a series of adjacency matrices which are fed into the graph convolution module to model the evolutionary correlations among time series. skip connection is utilized to deliver the information to the final output.



Figure 1: The possible interactions of variables in multivariate time series forecasting. Most existing works utilize the fixed correlation ( $A_0$ ). However, the graph structure is evolving  $(A_1 \text{ and } A_2)$  and varies in different observation scales  $(A_3)$ .

To equip the graph neural network with a flexible and practical graph structure, in this paper, we investigate how to model the evolutionary and multi-scale interactions of time series.



When we propose to take a further step and address the two problems above, three challenges are faced:

#### Evolving Graph Structure Learner (EGL) Temporal Convolution Module

We design an EGL to extract dynamic correlations among variables, which is the highlight of our work. This module both considers the dependency with the current input values and the graph structure at last time step, which could be formulated under a recurrent manner.



• Aggregate the features of each segment:  $\boldsymbol{\gamma}^{(m)} = AGG(\boldsymbol{\xi}^{((m-1)d+1:md)}) \in \mathbb{R}^{N \times C_{\boldsymbol{\xi}}}$ 

 $[\boldsymbol{\gamma}^{(1)}, \boldsymbol{\gamma}^{(2)}, ..., \boldsymbol{\gamma}^{(m)}, ..., \boldsymbol{\gamma}^{(M)}]$ 

- Update the node representation  $\alpha$  with GRU:  $\boldsymbol{r}^{(m)} = \sigma(\boldsymbol{W}_r[\boldsymbol{\gamma}^{(m)}, \boldsymbol{\alpha}^{(m-1)}] + \boldsymbol{b}_r),$  $\boldsymbol{u}^{(m)} = \sigma(\boldsymbol{W}_u[\boldsymbol{\gamma}^{(m)}, \boldsymbol{\alpha}^{(m-1)}] + \boldsymbol{b}_u),$  $\boldsymbol{o}^{(m)} = \boldsymbol{\mu}(\boldsymbol{W}_{o}[\boldsymbol{\gamma}^{(m)}, (\boldsymbol{r}^{(m)} \odot \boldsymbol{\alpha}^{(m-1)})] + \boldsymbol{b}_{o}),$ 
  - $\boldsymbol{\alpha}^{(m)} = \boldsymbol{u}^{(m)} \odot \boldsymbol{\alpha}^{(m-1)} + (1 \boldsymbol{u}^{(m)}) \odot \boldsymbol{o}^{(m)}$

- Dilated inception layer (DIL):
- Dilated causal convolution
  - Multiple filters with different sizes
- Gating mechanism:



By Stacking multiple layers, the temporal convolution module capture temporal patterns at different temporal scales.



### Scale-specific EGL

The dependency among variables not only evolves over time but also varies on different time scales. In addition, the evolving patterns of the graph structure are also not the same at different time scales. Thus, we utilize the scale-specific evolving graph structure learner to discover correlations among variables for the specific scale level. varies on different time scales



Scale-specific evolving graph structure learner

- 1. The evolving graph structure is not only influenced by the current input but also strongly correlated to itself at the previous time step. The recurrent construction manner has been rarely discussed.
- 2. Generating the graph structure for each time step to model the evolution through existing self-learned methods would bring too many parameters, which results in difficulty for model convergence.
- 3. It is a nontrivial endeavor to capture the scale-specific graph structure among nodes due to the excess information and messy relationship behind it.

## Formulation

- Multivariate Time Series Forecasting
  - The time series with *N* variables :

 $\mathbf{X} = \{ X^{(1)}, X^{(2)}, \cdots, X^{(T)} \} \in \mathbb{R}^{N \times T \times C}$ 

• Given a look-back window *P* :

Single-step forecasting :  $X^{(t-P+1:t)} \xrightarrow{\mathcal{F}_1} X^{(t+Q)}$ 

Multi-step forecasting :

 $X^{(t-P+1:t)} \xrightarrow{\mathcal{F}_2} X^{(t+1:t+Q)}$ 

## Datasets & Setup

Init hidden state of GRU:

 $\boldsymbol{\alpha}^{(0)} = \mathrm{MLP}_{s}(\boldsymbol{\alpha}_{s})$ 

 $\alpha_{s,i} = \mathcal{F}_s(X_i^*)$ 

Derive the graph structure:

$$\hat{A}_{ij}^{(m)} = \text{MLP}_e(\boldsymbol{\alpha}_i^{(m)}, \boldsymbol{\alpha}_j^{(m)}),$$
$$\boldsymbol{M}_{ij}^{(m)} = \text{MLP}_m(\boldsymbol{\alpha}_i^{(m)}, \boldsymbol{\alpha}_j^{(m)}),$$
$$\boldsymbol{A}^{(m)} = \hat{A}^{(m)} \odot \sigma(\boldsymbol{M}^{(m)}),$$

$$[A^{(l,1)}, A^{(l,2)}, ..., A^{(l,M^{(l)})}] = \mathcal{F}_a^{(l)}(\xi^{(l)}, d^{(l)}) \quad l \quad \text{-th EG}$$

- Evolving Graph Convolution Module
- Mix-hop propagation

information propagation:  $H_{(\psi)} = \beta \xi + (1 - \beta) A H_{(\psi-1)}$  information selection:  $Z' = \sum_{k=0}^{\infty} H_{(\psi)} W_{(\psi)}$ 

• Fed into mix-hop propagation layer with its corresponding adjacency matrix  $Z'^{(l,m)} = \mathcal{F}_a^{(l)}(\xi^{(l,(m-1)d^{(l)}+1:md^{(l)})}, A^{(l,m)})$ 

### Case Study: Verify the Effectiveness of EGL

#### The evolutionary correlations

1) In Figure 5(c), before 16:30, station 166 and station 141 have a strong correlation with each other. However, after 16:30, station 141 remains stable but station 166 fluctuates dramatically. The fact that the correlations evolve from high to low is well captured by the adjacency matrices.

2)The evolutionary correlation captured by the adjacency matrices between station166 and station 217 rises in the beginning and falls in the end, which is also consistent with the fact shown in Figure 5(c).

### The correlations at different observation scales

In Figure 5(d), the values in the adjacency matrix at the scale 1  $A^{(1,6)}$  tend to be highly polarized, which indicates the short-term dependency of the stations is more likely to differ from others. However, at the last scale, the more average values in the adjacency matrix  $A^{(3,1)}$  clarify that the 4 time series possess the same pattern from the long-term view.

## Results

### Comparison With Baselines

methods using only one

scale information by a

large margin, which

indicates the superiority

of fusing the multi-scale

representations to make

the final prediction.

Table 2: Comparison with baselines on single-step forecasting.

| Dataset     | Matrice  | Solar-Energy |        |        |        |        | Electricity |        |        | Exchange Rate |        |        | Wind   |        |        |        |        |
|-------------|----------|--------------|--------|--------|--------|--------|-------------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|--------|
| Dataset     | Wietrics | 3            | 6      | 12     | 24     | 3      | 6           | 12     | 24     | 3             | 6      | 12     | 24     | 3      | 6      | 12     | 24     |
| AD          | RSE      | 0.2435       | 0.3790 | 0.5911 | 0.8699 | 0.0995 | 0.1035      | 0.1050 | 0.1054 | 0.0228        | 0.0279 | 0.0353 | 0.0445 | 0.7161 | 0.7572 | 0.8076 | 0.9371 |
| AR          | CORR     | 0.9710       | 0.9263 | 0.8107 | 0.5314 | 0.8845 | 0.8632      | 0.8591 | 0.8595 | 0.9734        | 0.9656 | 0.9526 | 0.9357 | 0.6459 | 0.6046 | 0.5560 | 0.4633 |
| CP          | RSE      | 0.2259       | 0.3286 | 0.5200 | 0.7973 | 0.1500 | 0.1907      | 0.1621 | 0.1273 | 0.0239        | 0.0272 | 0.0394 | 0.0580 | 0.6689 | 0.6761 | 0.6772 | 0.6819 |
| Gr          | CORR     | 0.9751       | 0.9448 | 0.8518 | 0.5971 | 0.8670 | 0.8334      | 0.8394 | 0.8818 | 0.8713        | 0.8193 | 0.8484 | 0.8278 | 0.6964 | 0.6877 | 0.6846 | 0.6781 |
| VADMID      | RSE      | 0.1922       | 0.2679 | 0.4244 | 0.6841 | 0.1393 | 0.1620      | 0.1557 | 0.1274 | 0.0265        | 0.0394 | 0.0407 | 0.0578 | 0.7356 | 0.7769 | 0.8071 | 0.8334 |
| VARMLP      | CORR     | 0.9829       | 0.9655 | 0.9058 | 0.7149 | 0.8708 | 0.8389      | 0.8192 | 0.8679 | 0.8609        | 0.8725 | 0.8280 | 0.7675 | 0.6415 | 0.5973 | 0.5724 | 0.5470 |
| RNN-GRU     | RSE      | 0.1932       | 0.2628 | 0.4163 | 0.4852 | 0.1102 | 0.1144      | 0.1183 | 0.1295 | 0.0192        | 0.0264 | 0.0408 | 0.0626 | 0.6131 | 0.6479 | 0.6573 | 0.6381 |
|             | CORR     | 0.9823       | 0.9675 | 0.9150 | 0.8823 | 0.8597 | 0.8623      | 0.8472 | 0.8651 | 0.9786        | 0.9712 | 0.9531 | 0.9223 | 0.7403 | 0.7089 | 0.6956 | 0.7173 |
| LOTNI       | RSE      | 0.1843       | 0.2559 | 0.3254 | 0.4643 | 0.0864 | 0.0931      | 0.1007 | 0.1007 | 0.0226        | 0.0280 | 0.0356 | 0.0449 | 0.6079 | 0.6262 | 0.6279 | 0.6257 |
| LSTNet      | CORR     | 0.9843       | 0.9690 | 0.9467 | 0.8870 | 0.9283 | 0.9135      | 0.9077 | 0.9119 | 0.9735        | 0.9658 | 0.9511 | 0.9354 | 0.7436 | 0.7275 | 0.7249 | 0.7284 |
| TDAISTM     | RSE      | 0.1803       | 0.2347 | 0.3234 | 0.4389 | 0.0823 | 0.0916      | 0.0964 | 0.1006 | 0.0174        | 0.0241 | 0.0341 | 0.0444 | 0.6093 | 0.6292 | 0.6290 | 0.6335 |
| IFA-LOIM    | CORR     | 0.9850       | 0.9742 | 0.9487 | 0.9081 | 0.9439 | 0.9337      | 0.9250 | 0.9133 | 0.9790        | 0.9709 | 0.9564 | 0.9381 | 0.7433 | 0.7240 | 0.7235 | 0.7202 |
| MTCNN       | RSE      | 0.1778       | 0.2348 | 0.3109 | 0.4270 | 0.0745 | 0.0878      | 0.0916 | 0.0953 | 0.0194        | 0.0259 | 0.0349 | 0.0456 | 0.6204 | 0.6346 | 0.6363 | 0.6426 |
| MIGININ     | CORR     | 0.9852       | 0.9726 | 0.9509 | 0.9031 | 0.9474 | 0.9316      | 0.9278 | 0.9234 | 0.9786        | 0.9708 | 0.9551 | 0.9372 | 0.7337 | 0.7209 | 0.7164 | 0.7134 |
| Store CNINI | RSE      | 0.1839       | 0.2612 | 0.3564 | 0.4768 | 0.0799 | 0.0909      | 0.0989 | 0.1019 | 0.0506        | 0.0674 | 0.0676 | 0.0685 | 0.6197 | 0.6358 | 0.6243 | 0.6379 |
| Stelliginin | CORR     | 0.9841       | 0.9679 | 0.9395 | 0.8740 | 0.9490 | 0.9397      | 0.9342 | 0.9209 | 0.8871        | 0.8703 | 0.8499 | 0.8738 | 0.7282 | 0.7202 | 0.7228 | 0.7130 |
| ESC         | RSE      | 0.1708       | 0.2278 | 0.3073 | 0.4101 | 0.0718 | 0.0844      | 0.0898 | 0.0962 | 0.0181        | 0.0246 | 0.0345 | 0.0468 | 0.6118 | 0.6250 | 0.6272 | 0.6298 |
| ESG         | CORR     | 0.9865       | 0.9743 | 0.9519 | 0.9100 | 0.9494 | 0.9372      | 0.9321 | 0.9279 | 0.9792        | 0.9717 | 0.9564 | 0.9392 | 0.7417 | 0.7281 | 0.7258 | 0.7225 |

#### Table 3: Comparison with baselines on multi-step forecasting.

| Dataset                     | Method  |         | Horizon 3          | 3      |          | Horizon 6                    | 1        | J       | Horizon 12            |        |              | All     | CODD            |  |
|-----------------------------|---------|---------|--------------------|--------|----------|------------------------------|----------|---------|-----------------------|--------|--------------|---------|-----------------|--|
| Dataset                     | memou   | RMSE    | MAE                | CORR   | RMSE     | MAE                          | CORR     | RMSE    | MAE                   | CORR   | RMSE         | MAE     | CORR            |  |
|                             | XGBoost | 3.7048  | 2.2167             | 0.5232 | 4.1747   | 2.5511                       | 0.3614   | 4.3925  | 2.7091                | 0.2894 | 4.0494       | 2.4689  | 0.4107          |  |
|                             | DCRNN   | 3.0172  | 1.7917             | 0.6967 | 3.2369   | 1.9078                       | 0.6609   | 3.5100  | 2.0325                | 0.6196 | 3.2274       | 1.8973  | 0.6601          |  |
|                             | STGCN   | 2.6256  | 1.6456             | 0.7539 | 3.8368   | 2.2827                       | 0.6282   | 4.3713  | 2.6052                | 0.4521 | 3.7829       | 2.2076  | 0.5933          |  |
| NVC_Bike                    | STG2Seq | 3.4669  | 2.0409             | 0.5999 | 3.9145   | 2.2630                       | 0.5079   | 4.2373  | 2.5163                | 0.4443 | 3.7843       | 2.2055  | 0.5413          |  |
| IN IC-DIKE                  | STSGCN  | 2.7328  | 1.6973             | 0.7386 | 2.8861   | 1.7416                       | 0.7179   | 3.0548  | 1.8224                | 0.6903 | 2.8846       | 1.7538  | 0.7126          |  |
|                             | MTGNN   | 2.5962  | 1.5668             | 0.7626 | 2.7588   | 1.6525                       | 0.7447   | 3.3068  | 1.7892                | 0.6931 | 2.7791       | 1.6595  | 0.7353          |  |
|                             | CCRNN   | 2.6538  | 1.6565             | 0.7534 | 2.7561   | 1.7061                       | 0.7411   | 2.9436  | 1.8040                | 0.7029 | 2.7674       | 1.7133  | 0.7333          |  |
|                             | GTS     | 2.7628  | 1.7159             | 0.7248 | 2.9287   | 1.7769                       | 0.7007   | 3.1649  | 1.8905                | 0.6622 | 2.9258       | 1.7798  | 0.6985          |  |
|                             | ESG     | 2.5529  | 1.5483             | 0.7638 | 2.6484   | 1.6026                       | 0.7511   | 2.8778  | 1.7173                | 0.7152 | 2.6727       | 1.6129  | 0.7449          |  |
|                             | XGBoost | 15.0372 | 8.4121             | 0.6862 | 21.3395  | 11.8491                      | 0.4433   | 26.7073 | 15.7165               | 0.0452 | 21.1994      | 11.6806 | 0.4416          |  |
|                             | DCRNN   | 12.3223 | 7.0655             | 0.7591 | 15.1599  | 8.6639                       | 0.6634   | 17.8194 | 10.5095               | 0.5395 | 14.8318      | 8.4835  | 0.6671          |  |
|                             | STGCN   | 11.2175 | 6.1441             | 0.8090 | 14.0360  | 7.6797                       | 0.7470   | 18.7168 | 10.2211               | 0.5922 | 14.6473      | 7.8435  | 0.7257          |  |
| NYC-Taxi                    | STG2Seq | 14.0756 | 7.7274             | 0.7258 | 19.1757  | 10.5066                      | 0.5429   | 24.5691 | 14.3603               | 0.2855 | 19.2077      | 10.4925 | 0.5389          |  |
|                             | STSGCN  | 10.5381 | 5.6448             | 0.8370 | 10.8444  | 5.7634                       | 0.8302   | 11.9443 | 6.3185                | 0.7988 | 10.9692      | 5.8299  | 0.8242          |  |
|                             | MTGNN   | 10.3394 | 5.6775             | 0.8374 | 10.7534  | 5.8168                       | 0.8312   | 12.5164 | 6.5285                | 0.7972 | 10.9472      | 5.9192  | 0.8249          |  |
|                             | CCRNN   | 9.3033  | 5.4586             | 0.8529 | 9.7794   | 5.6362                       | 0.8438   | 10.9585 | 6.1416                | 0.8186 | 9.8744       | 5.6636  | 0.8416          |  |
|                             | GTS     | 10.7796 | 6.2337             | 0.7974 | 13.0215  | 7.3251                       | 0.7299   | 14.9906 | 8.5328                | 0.6524 | 12.7511      | 7.2095  | 0.7348          |  |
|                             | ESG     | 8.5745  | 4.8750             | 0.8656 | 9.0125   | 5.0500                       | 0.8592   | 9.7857  | 5.4019                | 0.8450 | 8.9759       | 5.0344  | 0.8592          |  |
| Ab                          | latio   | n St    | udy                | _      |          |                              | Г        | able 4  | Ablati                | on Stu | dy.          |         |                 |  |
| Table 4 show that $all_{=}$ |         |         | $a11_{-}$          | Method |          |                              | R        | RMSE    |                       | MAE    |              | CORR    |                 |  |
|                             |         |         | Static Graph Only  |        |          | $2.7439 \pm 0.0438$          |          | 1.63    | $1.6302 \pm 0.0176$   |        | 0.7388±0.005 |         |                 |  |
| components contribute to    |         | e to    | w/o Scale-Specific |        |          | $2.8102 \pm 0.0433$          |          | 1.66    | $1.6663 \pm 0.0150$   |        | 0.7259±0.004 |         |                 |  |
| ho fin                      | al ata  | to of   | tha                | ont    | Same Pat | tern of E                    | volution | 2.727   | $4 \pm 0.0177$        | 1.62   | 96±0.0036    | 0.74    | $402 \pm 0.002$ |  |
| the final state-of-the-art- |         |         | ESG                |        |          | 2.6727±0.0117 1.6            |          | 1.612   | 29±0.0086 0.7449±0.00 |        | 49±0.00      |         |                 |  |
| esults                      | to a c  | ertain  | exte               | ent.   | -        | scale 0                      | scal     | e1 💻    | scale 2               | scale  | 3 <u>s</u> s | cale 4  | ESG             |  |
| ESG                         | outpe   | erfor   | ms                 | the    | 4.5      | See monoto astracticada. 201 |          |         |                       | 0.75   |              |         |                 |  |

Horizon 6 Horizon 12

RMSE

0.50

Figure 4: Utilizing the information at different scales.

We conduct detailed experiments on six popular real-world datasets. Brief statistical information is listed in Table 1.

#### Table 1: The overall information for datasets.

| Datasets      | Nodes | Timesteps | Granularity | Task Types  | Partition |  |
|---------------|-------|-----------|-------------|-------------|-----------|--|
| Solar-Energy  | 137   | 52560     | 10min       |             |           |  |
| Electricity   | 321   | 26304     | 1hour       | Single stop | 6/2/2     |  |
| Exchange Rate | 8     | 7588      | 1day        | Single-step |           |  |
| Wind          | 28    | 10957     | 1day        |             |           |  |
| NYC-Bike      | 250   | 4368      | 30min       | Multi stop  | 7/1.5/1.5 |  |
| NYC-Taxi      | 266   | 4368      | 30min       | Multi-step  |           |  |

We utilize two groups of evaluation metrics for the different forecasting tasks. For the single-step prediction, Root Relative Squared Error (RSE) and Empirical Correlation Coefficient (CORR) are selected. The multi-step prediction tasks are evaluated by Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Empirical Correlation Coefficient (CORR). The lower value indicates better performance for all evaluation metrics except CORR.

The two case studies above offer us a strong support to verify that the evolving and multi-scale correlations among multivariate time series are well captured by ESG.



Figure 5: (a) A series of adjacency matrices in scale 2 on the NYC-Bike dataset, which reveals a strong evolving pattern. (b) The location of node 77, 141, 166 and 217 on the map. (c) The raw time series curves on 12 time steps, which corresponds to the adjacency matrices shown in (a) and (d). (d) Several adjacency matrices on scale 1 and 3.